- Gen
- Calc
- Sym
- Func
- Fig
- Set
- Log
- Sci
- Elem
- Char
$\frac{\square}{\square}$⬜⬜$\sqrt{\square}$√⬜$\sqrt[3]{\square}$3√⬜$\sqrt[\square]{\square}$⬜√⬜$\square^2$⬜2$\square_2$⬜2$\overrightarrow{\square}$⬜$\rightarrow$→
$\left(\square\right)$(⬜)$\left\{\square\right\}${⬜}$\left[\square\right]$[⬜]$\left|\square\right|$|⬜|$$$\times$×$\div$÷$/$/
$+$+$-$−$\cdot$·$\times$×$\div$÷$\cdots$⋯$/$/$\pm$±$\mp$∓$\rightarrow$→
$=$=$\fallingdotseq$≒$\ne$≠$\leqq$≦$\geqq$≧$<$<$>$>$\ll$≪$\gg$≫
$\pi$π$\infty$∞$!$!$\%$%$\ell$ℓ$\degree$°$0$0$i$i$e$e
$\therefore$∴$\because$∵
$\sin$sin$\cos$cos$\tan$tan$\log$log$\log_{10}$log10$\ln$ln
$\Sigma$Σ$\Pi$Π$\int$∫$\lim$lim
$\equiv$≡$∽$∽$∟$∟$\angle$∠$\parallelj$//$\perp$⊥$0$0
$〇$〇$\times$×$\triangle$△$\square$⬜$\diamond$◇$\parallelogram$▱
$\in$∈$\ni$∋$\subseteq$⊆$\supseteq$⊇$\subset$⊂$\supset$⊃$\notin$∉$\not\ni$∌$\not\subseteq$⊈$\not\supseteq$⊉
$\not\subset$⊄$\not\supset$⊅$\cap$∩$\cup$∪$\varnothing$∅$+$+$\times$×$\mathbb{N}$ℕ$\mathbb{Z}$ℤ
$\wedge$∧$\vee$∨$\neg$¬$⊼$⊼$⊽$⊽$\oplus$⊕$\Rightarrow$⇒$\Leftrightarrow$⇔$\vdash$⊦$\models$⊨
$\to$→$\top$⊤$\bot$⊥$\therefore$∴$\because$∵$≔$≔$\forall$∀$\exists$∃$∄$∄
$^2\square$2⬜$_2\square$2⬜$\square^2$⬜2$\square_2$⬜2$+$+$-$−$/$/$\rightarrow$→$\leftrightarrows$⇄$=$=
$\Omega$Ω$\%$%$\ell$ℓ$℃$℃
$H$H$C$C$N$N$O$O$F$F$Na$Na$Mg$Mg$Al$Al$S$S$Cl$Cl
$K$K$Ca$Ca$Fe$Fe$Cu$Cu$Zn$Zn$Br$Br$Ag$Ag$I$I$Pb$Pb
$\alpha$α$\beta$β$\gamma$γ$\theta$θ$\lambda$λ$\mu$μ$\nu$ν$\rho$ρ$\phi$ϕ$\omega$ω
$\Delta$Δ$\Omega$Ω